

Management Structure in Transition

- Management by DTC Director (Bill Kuo / NCAR) and Deputy Director (Steve Koch / NOAA)
- Priorities set by funding agencies with guidance from Advisory Board

Once charter is approved

Executive Committee	Members from funding agencies	Appoints DTC director, executive oversight
Management Board	Director, deputy directors, members from funding organizations	Annual operating plan and budget
Advisory Board	Members from operational and research communities	Strategic direction and objectives

WRF DTC Activities - I

Support codes to the community

- User support for the WRF Model in the context of a unified WRF system (DTC is member of WRF Developers Committee)
 - Share with NCAR / MMM support of ARW, as well as pre-(WPS) and post-processor (WPP)
 - Share with NOAA NCEP support of WRF Non-hydrostatic Mesoscale Model (NMM) dynamic core
- MET for forecast verification
 - State-of-the-art model verification software
 - □ Traditional grid-to-grid and grid-to-point verification
 - Advanced verification based on spatial techniques
- Developing
 - □ GSI (NCEP 3DVAR Analysis)
 - □ HWRF (NCEP Hurricane WRF model)

.

WRF DTC Activities - II

Visitor Program

- Fund scientists in projects that lead to increased capabilities of WRF models (physics and dynamics), model testing and evaluation, data assimilation, ensembles, and verification techniques
- Offer one month of salary plus travel and per diem
- Scientist can work at DTC (NCAR or NOAA ESRL) or an operational center

WRF DTC Activities - III

- Verification System for internal use (T & E activities)
 - □ Expertise with NCEP Verification Packages
 - Routines developed to create and query databases and generate plots
- Development and support of verification tools to the community
 - Model Evaluation Tools (MET)
- Scientific body for testing, development and advancing of verification techniques
 - □ Routine use of uncertainty measures (confidence intervals and others) to communicate verification results
 - Visitor program
 - □ Inclusion of "advanced" verification techniques in MET

7

WRF DTC Activities – IV

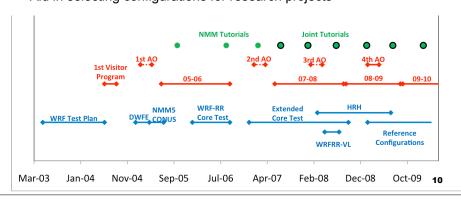
Computational Infrastructure for Testing and Evaluation

Package	Function
SI/WPS	Pre-processing
WRF	Forecast model
WPP	Post-processing
NCL	Plotting
NCEP Vx	Verification
NHC Vx	Hurricane Vx
GFDL Tracker	Vortex Tracker
Database	Store Vx results
Website	Display
Archival	Data storage
Scripts/Workflow	Automation

- Porting
- Automation
- Interoperability

Computational Challenges

- Porting individual codes/scripts to multiple platforms
 - □ Lots of code from multiple institutions (NCAR, NCEP, NHC etc.)
 - □ Some code must be adapted to new requirements
 - □ Code and scripts must run on multiple systems (e.g. bluefire, wjet)
- Automation
 - □ Need to do hundreds of end-to-end runs
 - □ A single end-to-end run may consist of hundreds of tasks
 - ☐ Tasks have dependencies (on other tasks, on data, on time of day)
 - □ Must be fault tolerant
- Data movement and analysis
 - □ Assemble input data from multiple institutions
 - □ Transfer and Archive results
 - □ Deliver results for display and analysis
 - Web page graphics displays
 - AWIPS, FX-Net
 - AB Verification database and web display


9

WRF DTC Activities - V

Testing and Evaluation activities (slides to follow)

Operational Community

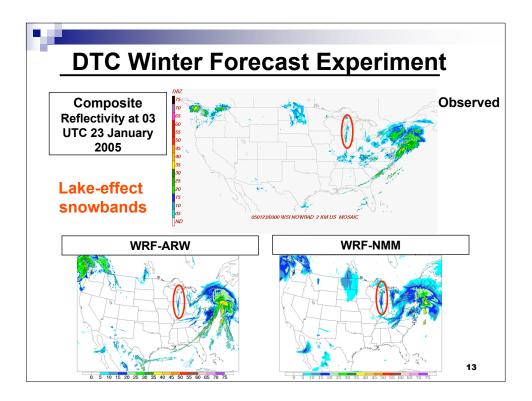
- Provide guidance for next generation Operational Configurations
 Research Community
- Provide baselines for evaluating impacts of new techniques
- Aid in selecting configurations for research projects

WRF Test Plan

Impacts on NCEP

- Demonstrated the 6 WRF members tested were qualified to run as an ensemble system
- 21 Sept 2004: IOC 2 members (ARW & NMM no physics swapping)
- 6 Dec 2005: 6 WRF members added to NCEP Short-Range Ensemble Forecast (SREF)
- New WRF-based SREF outperformed the current one in all ensemble aspects

11



DTC Winter Forecast Experiment

Goal: Provide real-time experimental model guidance for winter weather over a large domain using 2 WRF configurations w/ explicit convection

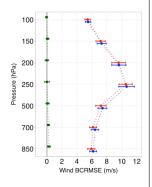
Objectives

- Expose forecasters to WRF at very high resolution prior to the first scheduled operational implementation at NCEP
- Determine whether encouraging results from warm season 4-km WRF runs carry over to winter

DTC Winter Forecast Experiment

Impact on NWS

- Provided valuable hands-on experience to forecasters with high-resolution (5-km) WRF model output over CONUS
- NCEP added simulated reflectivity to diagnostic fields and made available to WFOs
- 28 June 2005: Results using high-resolution WRF with explicit microphysics alone prompted NCEP to upgrade resolution of HRW (NMM 8.0 to 5.1 km / ARW 10 to 5.8 km)
- DTC demonstrated importance of using statistical tests of significance when comparing forecast skill from multiple models



WRF Core Test: Rapid Refresh (RR)

Impact on NWS

Goals

- Conduct controlled experiments carefully comparing the 2 WRF dynamic cores.
- Provide datasets to support GSD's dynamic core recommendation to NCEP for WRF-RR

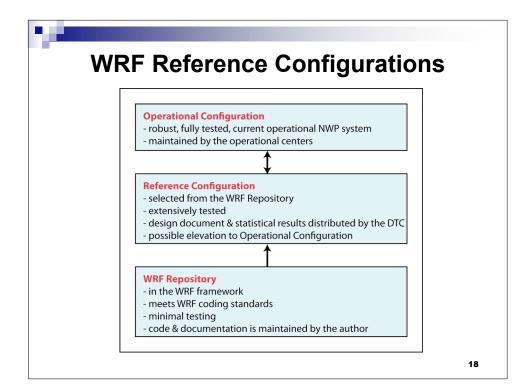
Impacts

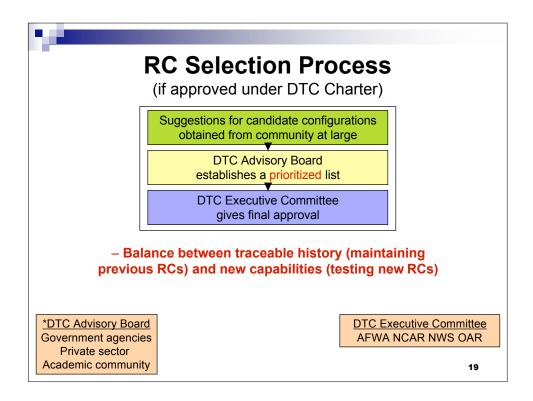
- 1st ever "clean" WRF dynamic core comparison conducted anywhere
- ARW selected for initial implementation of WRF-RR at NCEP scheduled for 2010

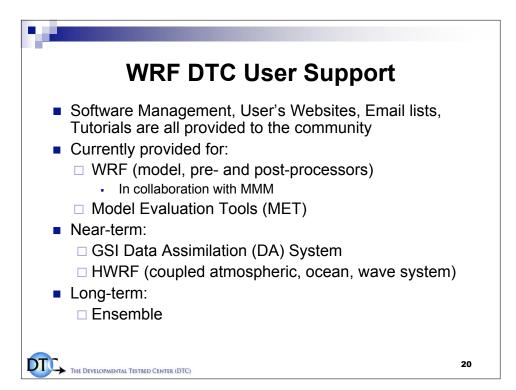
15

Extended Core Test CT2007 ARW and NMM BCRMSE: AnnualTime Period, P250, VWND AGD NGD A-NGD A12 N12 A-N22 A34 NS4 A-N54 A38 N35 A-N56 A48 N48 A-N48 A60 N60 A-N60 Forecast Lead Time (hours)

- ARW and NMM results are not substantially different
- Inter-core differences do not grow in time
- Potential for transferring research done with one core to the other




Statistical Significance Assessment

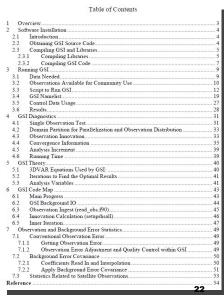

Confidence Interval (CI) Methodology

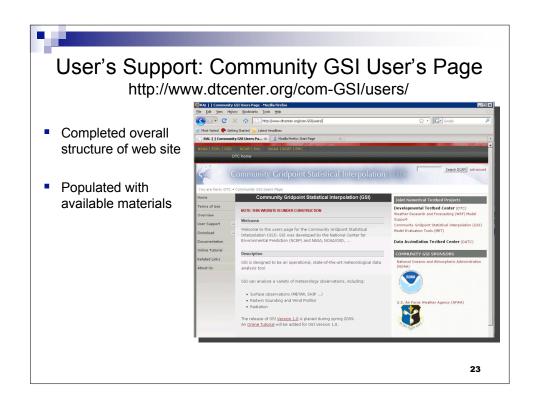
- Single model configuration
 - □ Surface and upper air
 - Auto-correlation correction
 - Normal distribution
 - QPF
 - Bootstrap
- Comparison of 2 model configurations
 - □ Pairwise technique

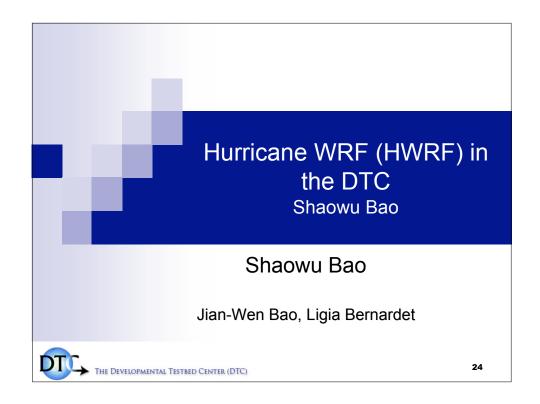
New Tools: MySQL database + R-language scripts to gather data, compute aggregate statistics, pairwise differences, and CIs

GSI Support

- Gridpoint Statistical Interpolation (GSI):
 - □ Variational data analysis system developed by NCEP
 - □ Implemented in several operation systems such as GFS and NAM
 - □ Used in Rapid Refresh
 - ☐ AFWA is planning to use it in operation
- DTC goals
 - □ Test and evaluate GSI
 - □ Support research community to use GSI
 - □ Feed research community contributions back to NCEP


21




User Support: GSI User's Guide

- Draft completed
- Proofread by GSD & NCEP
- Revised based on feedback
- Update to match GSI version to be released
- Final review

(RED = work in progress)

Model Evaluation Tools (MET): Community Tools for Forecast Evaluation

Tressa Fowler

Barbara Brown, John Halley Gotway, Randy Bullock, Eric Gilleland, David Ahijevych, and Tara Jensen

25

Future Activities

- Continue activities presented in this review
- Ensemble Forecasting
 - □ Priority for NCEP
 - □ DTC needs to develop expertise
 - □ Possible new hire(s)
- Hurricane Forecast Improvement Project
 - □ Port HYCOM ocean model to couple with NMM
- Possibly extend beyond WRF
 - □ Earth System Modeling Framework (ESMF)
 - Other operational models

Benefits of DTC to NOAA

Increased cost savings

- Reduce time required at NCEP to bring Contributed Code to state of readiness for operational implementation
- DTC distributed resources will reduce burden on NOAA to provide all the necessary resources to accomplish its technology transition goals

Improvements to productivity

- □ Faster code implementation means faster rate of improved weather services to the public
- DTC will permit the operational forecasting centers to fully utilize the scientific resources in the research community (including OAR labs)

27

Possible Interactions of DTC with HMT

- New verification capabilities for RFC event-based verification and spatial verification methods for ensemble-based precipitation forecasts.
- Determine impact of ground-based GPS water vapor observations and space-based radio occultation data on QPF associated with significant precipitation events.
- Investigate impacts of model physics on performance of WRF in the prediction of hydrometeorological variables in the HMT focus regions

Possible Interactions of DTC with HWT

- Application of spatial verification techniques (MODE) to convective-resolving models run during Spring Exp.
- Development and application of methods for verifying high-resolution model ensembles
- Investigate impacts of model physics on performance of WRF in the prediction of severe storm environment
- DTC Visitor Program (Univ. of Oklahoma, REU)

29

Possible Interactions of DTC with SPoRT - GOES Proving Ground - JCSDA

- Collaborate to transition satellite observations/products and research capabilities to the operational weather community by demonstrating the ability of these data to systematically improve short-term forecasts on a regional scale.
- DTC could use its experience during DWFE to help establish a two-way dialog between forecasters who will use WRF with the GOES-R products and those who are developing new products and application.

- Good opportunity: Impact of assimilating satellite data on short-range forecasting using GSI with enhanced capabilities (e.g., WRF-Rapid Refresh hourly updating with multi-sensor cloud analysis):
 - Evaluation of proxy ABI radiances and hyperspectral sounder data generated from model-simulated data in enhanced versions of GSI would require development of new methods for verification using forward models.
 - DTC could evaluate impact of synthetic GOES-R imagery for improving the two-moment prediction of hydrometeors in WRF.

31

Possible Interactions of DTC with JHT

- DTC provides community support for HWRF code management. JHT could support visiting scientists at the DTC to experiment with HWRF research models.
- JHT has a stated objective to "complete tests in a quasioperational environment of new tools, techniques, etc. provided by funded researchers". Such an environment is uniquely provided by the DTC to researchers.
- HWRF being developed by DTC in the repository will include coupling to HYCOM, WAVEWATCH, LSM, storm surge and hydrology models for inland flooding. Much opportunity here for jointly funded projects.

Possible Interactions of DTC with SIP

- SIP is "a focal point for developing and supporting a closer relationship between weather researchers, operational forecasters, relevant end users, and social scientists concerned with the impacts of weather and weather information on society".
- DTC can provide expertise in the areas of modeling, data assimilation, and verification as needed to realize the goals of SIP. Potential topics might include:
 - □ Communicating weather forecast uncertainty
 - □ Quantifying the impact of NWP information on economic sectors
 - □ Determining societal value of improved QPF information

33

Possible Interactions of DTC with CSTAR

- Key CSTAR objective is to bring current NWSsupported collaborative activities with the academic community into a structured program and to create a cost-effective transition from basic and applied research to operations and services.
- Strong linkage with DTC Visitor Program could be fostered, possibly through COMET Outreach Program.
- Experimental versions of WRF being run by universities in support of local/regional NWS offices could be subjected to more rigorous and systematic evaluation.

Possible Interactions of DTC with THORPEX

- An international program to improve the skill of highimpact weather forecasts for the benefit of society, economy, environment. A chief goal: accelerate improvements in the accuracy of NWP, probabilistic forecasting and the description of IC uncertainty.
- May make the most sense once DTC mission has been expanded to include testing and evaluation of global models for accelerating improvements in the accuracy of 1-day to 2-week high-impact weather forecasts.